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The detailed analysis of measured interferograms generally requires phase correction. Phase shift correction methods are commonly used and well documented for conventional Fourier Transform Spectroscopy (FTS). However, measured interferograms can show additional phase errors depending on the optical path difference and signal frequency, which we call phase distortion. In Spatial Heterodyne Spectroscopy (SHS) they can be caused, for instance, by optical defects or image distortions, making them a characteristic of the individual spectrometer. They can generally be corrected without significant loss of signal to noise. We present a technique to measure phase distortion using a measured example interferogram. We also describe a technique to correct for phase distortion and test its performance using a simulation with a near UV solar spectrum. We find that for our measured example interferogram the phase distortion is small and nearly frequency independent. Furthermore, we show that the presented phase correction technique is especially effective for apodized interferograms.
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Introduction

Spatial Heterodyne Spectroscopy (SHS) is a relatively novel concept that when compared to other spectroscopic techniques like Fabry-Perot or Michelson interferometers can offer many advantages for high spectral resolution diffuse-source spectroscopy. It was conceived in the late 1980s and was made possible primarily by the availability of detector arrays, e.g. the Charge Coupled Device (CCD), in combination with high computing speed to process the recorded interferogram data.1 

The basic SHS configuration is similar to a Michelson interferometer with the return mirrors replaced by fixed diffraction gratings. It contains no moving parts and can be field widened with fixed prisms in the interferometer arms to increase the étendue of the instrument by as much as two orders of magnitude over conventional Fabry-Perot or scanning Michelson interferometers. Detailed descriptions of SHS can be found in publications by Harlander et al. 1,2,3 


Fig. 1 shows the basic, non-field-widened SHS configuration. A major difference between conventional Fourier transform spectrometers (FTS) and SHS is that in SHS all interferogram points are recorded simultaneously by an array of detectors, whereas a FTS records the interferogram samples with a single detector in a time series during which the scan mirror is moving. In an FTS, light from the entire aperture of the interferometer is focused on a single detector element. This drives the need for flat, homogenous interferometer optics and a well-controlled scanning mechanism because variations in optical path difference across the interferometer aperture of more than a fraction of a wavelength greatly reduce the detected fringe contrast and the signal-to-noise ratio of the spectrum. In the SHS configuration, the fringe localization plane near the gratings is focused onto the imaging detector as illustrated for one detector element in Fig. 1. Consequently, the signal for each interferogram element uses only a small area of the gratings, beamsplitter, and the exit optics before it reaches the detector. Variations in optical flatness across the aperture result primarily in a phase distortion in the interferogram and produce fringes that are not straight and equally spaced, however, the fringes are recorded with high contrast as long as the interferometer elements are good over the small area sampled by each detector pixel. These phase distortions are analogous to non-uniform path difference sampling in FTS. Another potential cause for phase distortion in an SHS interferogram is the image distortion of the exit optics, which re-images the fringe localization plane on the detector array. These phase distortions have no obvious equivalent in FTS. Generally, significant phase distortion can and should be avoided in any SHS instrument design. If, however, an instrument shows significant phase distortion4, it is a characteristic of the spectrometer and can generally be corrected without significant loss of signal to noise in the measured data during the post processing of the interferogram. The SHS concept therefore poses relaxed flatness, index homogeneity, and alignment requirements compared to an FTS. Moreover, optical defects, for example a scratch on the grating, have only a localized effect on the interferogram which allows for their isolation and proper treatment in the processing of the interferogram. 


In the following section we revisit the basics of the SHS interferogram as a basis for the subsequent discussion on how to determine the phase distortion for a given spectrometer. As an example, an interferogram measured with the SHIMMER-Space Shuttle Middeck instrument3 is used. Finally, correction techniques for different types of phase distortion are discussed using model calculations of a near UV solar spectrum.  
The SHS Interferogram

Fig. 1 illustrates the basic concept of how an SHS interferogram is created. Incoming wavefronts are split into the two interferometer arms and the returning diffracted wavefronts recombine at the beamsplitter. The recombining wavefronts are parallel and coincident for only one wavenumber, called the Littrow wavenumber ((o) which produces a constant signal across the detector. For wavenumbers different from the Littrow wavenumber, the exiting wavefronts are crossed as shown in Fig. 1 resulting in a fringe pattern that is recorded by the detector array. For wavenumbers close to the Littrow wavenumber, the spatial frequency of the fringes is directly proportional to the wavenumber difference ((( ( (o ( () so that the modulated portion of the detected signal is the Fourier transform of the incident spectral distribution heterodyned around the Littrow wavenumber.1 


For the following discussion of phase distortion we introduce the fundamental form of an SHS interferogram where x is the location of an individual detector element in the dispersion plane (x=0 is the point of stationary phase, i.e. the location of zero path difference (ZPD)), κ is proportional to the heterodyned wavenumber, ((, and Φ((,x) is an additive phase distortion term: 
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(1)

The goal is to retrieve the spectral intensity β(κ) from the interferogram which is the sum of cosine fringes with the amplitude β(κ) multiplied by a normalized envelope function A(κ, x). If the envelope function is unity and the phase distortion term, Φ((,x), is zero, a simple Fourier transform yields β(κ) for κ>0 and β(-κ) for κ<0. The effect of the envelope function is that the retrieved spectrum is convoluted with the Fourier transform of the envelope function. This effect is familiar from FTS and contributes to the finite resolution of measured spectra and the instrumental line shape function in general. In SHS, the envelope function depends on wavenumber independent contributions like the finite detector size and wavenumber dependent contributions like the modulation transfer function of the imaging optics. In the following we do not investigate the effects of A(κ, x) further since they are similar to FTS. Instead, we focus on the effect of the phase term. 

Measuring Phase Distortion 

Method

The overall approach to determine phase distortion is to use measurements of a monochromatic source. For a monochromatic source, the modulated portion of interferogram I(0 can be written as:
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If the phase distortion term varies slowly with x, the Fourier transform of I(0, F(I(0), has non-zero values only in the vicinity of  κ0 and -κ0, corresponding to the two exponential functions in (2). By multiplying F(I(0) with a window function that removes the signal at and around -κ0, we can isolate the signal around κ0 and after backward transformation, we get:
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The total phase for κ0 can then be obtained by2:
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Where
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extract the imaginary and real parts of their respective arguments. By subtracting the first term from the left side of equation (4) the phase distortion for the wavenumber of the monochromatic source can be determined. To determine the phase distortion as a function of wavenumber, Φ((,x), one can repeat the procedure with monochromatic sources of different wavenumbers. Most convenient is a tunable monochromatic source. As an alternative, one can also use a source with well-separated unresolved lines. Isolating the different lines in F(I) as described above then yields the same result as with a true monochromatic source. 

At this point, we also mention that the shape of the envelope function A(κ0, x) can be obtained from (3) since ((κ0) is a scalar and the exponent of the exponential function is known from the first term in (4).  The investigation of the wavenumber dependent envelope function is useful to understand the wavenumber dependent instrumental line shape function of a given interferometer.

Example

As an example for a measurement of the phase distortion of an SHS spectrometer we use the SHIMMER-MIDDECK (Spatial Heterodyne Imager for Mesospheric Radicals) instrument that flew on the Space Shuttle Atlantis (STS-112) in October 20023,5 and a MnNe (Manganese-Neon) hollow cathode lamp as the source. The SHIMMER-MIDDECK instrument measures double sided interferograms using a UV sensitive CCD. Some key design specifications of this instrument are listed in Table 1.  Fig. 2 shows the power spectrum (relative intensity versus fringe frequency) of the MnNe lamp within the passband of the spectrometer around 309nm. The spectrum was determined by transforming the modulated part of the measured interferogram after correcting it for detector offset (bias and dark) and a flat field. From the 32 interferograms that SHIMMER-MIDDECK images simultaneously on the CCD3, interferogram #16 was chosen for this example. This interferogram was recorded along a CCD row near the center of the 2D array. The power spectrum in Fig. 2 also includes the negative spatial frequencies, which result directly from the Fourier transform of the interferogram. The spectral filter blocks any real signal at negative frequencies (see Table 1). The spectral resolution of the measurement is about 58 mÅ. 

The MnNe spectrum features several atomic lines. Four of these lines, identified as A, B, C, and D in Fig. 2, were chosen for the determination of the wavenumber dependent phase distortion. They were selected because they are strong and interference of neighboring lines is minimal. Details about the selected lines are given in Table 2. 

Following the method described above we now isolate the individual lines. We chose to multiply the complex spectrum with normalized Gaussian functions centered on the maximum intensity of the lines and a full width at half maximum of 9.7 spectral elements. The isolation functions are shown in gray and referenced to the right ordinate in Fig. 2.   Backward transformation of the isolated lines yields I(0(x) for each line and we can now calculate the total phase (Φ((0,x)+(0x) for each line using equation (4). 

We define phase shift as the phase at x=0 (near ZPD). This phase shift can be considered to be the value of the phase distortion function at x=0.  The phase shift for our example spectrum is shown in Fig. 3 as a function of the wavelength. The near linear wavelength dependence is familiar from FTS and is the result of effects like the dispersion within the interferometer or the sampling grid, which generally does not include the ZPD location.  For increased clarity of the following considerations, we subtract the phase shift from the total phase of the emission line interferograms so that all measured phase functions are zero at x=0. 

In order to determine the phase distortion, Φ((0,x), from equation (4) we need to determine (((), where ( is the wavenumber of the signal. This is equivalent to the frequency calibration of the spectrometer. In our example, we fit a phase plane (((((), x) to the phase functions of the four emission lines. (((((), x) assumes a linear relationship between the heterodyned wavenumber and (:
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The two fit parameters are (0, the Littrow wavenumber, and C, a constant. The result of the fit is shown in Fig. 4. In this 3D plot, the measured, phase shift corrected phase functions of the four emission lines are plotted as bold solid lines with the fitted phase plane overplotted in gray. For the Littrow wavemunber (0 the phase function is zero for each pixel. For pixel number 0, near zero path difference, the phase function is zero for all wavenumbers since we phase shift corrected the measured phase functions. The fit results in a Littrow wavenumber (0 of 32570.4 cm-1 (( = 307.027 nm) and a C of 0.0101412 [rad / cm-1 / pixel width] which corresponds a grid spacing of about 58 mÅ in the spectrum and a maximum bandwidth of about 2.97 nm for 1024 interferogram samples. 

At this point we can determine the phase distortion Φ((0,x), which, according to equation (4) is the residual of the measured phase functions and the phase plane plus the phase shift which we subtracted before the fit. 

Fig. 5 shows the phase shift corrected phase distortion for the four emission lines in the MnNe spectrum. The data show that there is little phase distortion around the ZPD location (x=0), but a small additional phase component is apparent for all four wavenumbers toward higher optical path difference. The data do not show a strong wavenumber dependence of the phase distortion as indicated by the similarity of the four curves. The slight wavenumber dependence is possibly caused by the interference of neighboring lines. 

The smoothness of the phase distortion in Fig. 5 is a direct consequence of the narrow Gaussian isolation function. Ideally, a monochromatic source is used to determine the phase distortion, so that a narrow isolation function is not necessary to suppress neighboring lines, thus the phase distortion can be determined with higher resolution.  However, as long as the phase distortion is sufficiently slowly varying, a high resolution measurement of its variation should not be necessary. 

If significant phase distortion is present for a given SHS instrument, it is characteristic of the spectrometer and can generally be corrected for in the post processing of the interferogram with little impact on the signal to noise. In the following we discuss several types of phase errors and possible correction techniques.   

Phase shift (Φ = φκ(κ))
The case in which the phase term in equation (1) is a function of wavenumber only (Φ = φκ(κ)) is commonly known as phase shift. Possible causes for phase shift are an uncompensated beamsplitter or a sampling grid that does not include the exact zero path location of the measured interferogram. Phase shift has been discussed widely in the FTS literature so we only mention some key aspects of it and refer the reader to the references for details. 

Equation (1) shows that a phase shift is equivalent to a multiplication of the recovered spectrum by exp(iφκ(κ)) for κ>0 and exp(-iφκ(κ)) for κ<0. The simplest correction method is to calculate the absolute value of the retrieved spectrum, also called the power spectrum. This operation ensures that the entire spectral information is again contained in the real part of the recovered spectrum; however, it has a nonlinear effect on the measurement noise6 because both the real and imaginary noise components contribute to the power spectrum.  

Better correction techniques are based on a determination of φκ(κ) from the double sided part of the interferogram using the fact that the spectrum by definition has no imaginary part. Generally, the multiplication of the spectrum7 with exp(iφκ(κ)) or the equivalent convolution in the interferogram domain6 will yield the phase corrected spectrum. Especially for one sided interferograms and emission line spectra, the phase shift correction has to be performed carefully to avoid the introduction of intensity and absolute line position errors. Further details about phase shift correction can be found in the FTS literature.6, 7, 8, 9     
Frequency independent phase distortion (Φ = φx(x))
The case in which the phase term in equation (1) is a function of optical path difference only (Φ = φx(x)) is not typical for FTS, but can be found in narrow band pass SHS systems. It can be caused for example by grating figure errors or index inhomogeneities in the interferometer. The phase error φx(x) can be determined from a single interferogram of one monochromatic source as described by Harlander et al.2 or from a multi line source as discussed previously in this report. 

Correcting a frequency independent phase distortion2 can be achieved by a multiplication of the interferogram in equation (1) with exp[-iφx(x)] which yields:
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The first term is identical to the corresponding term in the interferogram without any phase error. Its Fourier transform is the spectrum β(κ) for κ>0. Here the instrumental line shape function is the Fourier transform of the envelope function A(κ,x), which remains unchanged. The second term in equation (6) acquires twice the phase error and the Fourier transform of this term results in β(κ) for κ<0 convoluted with the Fourier transform of A(κ,x)×exp[-2iφx(x)]. If this corrupted envelope function is a slowly varying function of x, its Fourier transform will be localized, i.e. confined to low frequency components. In this case the second term in equation (6) will have a very small effect on the κ>0 part of the Fourier transform of I’(x) which then contains the complete, corrected spectral information. The κ<0 part can be ignored.

According to the convolution theorem of Fourier transformation, the multiplication with exp[-iφx(x)] in equation (6) is equivalent to the convolution with the Fourier transform of  exp[-iφx(x)] in the spectral domain.  For slowly varying phase distortions the convolution kernel F(exp[-iφx(x)]) has the advantage of being localized in the spectral domain (see below).

Frequency dependent phase distortion (Φ = φ(x, κ))
The case of the frequency dependent phase distortion is the most general case. The previously discussed cases are included in this case. 

A possible cause for frequency dependent phase distortion is image distortion by the exit optics (L2 and L3 in Fig. 1). If image distortion is present, the fringe pattern at the detector still appears in focus, but the magnification of the image changes across the detector array. As a consequence the fringe frequency from a monochromatic source is changing across the detector array. In this case, the resulting phase distortion is proportional to the fringe frequency.  In our previously discussed example, image distortion would cause the phase distortion of line D (~467 fringes per detector width) to be about 2.8 times the phase distortion of line A (~164 fringes per detector width). Fig.5 does not show this behavior which indicates that for this instrument image distortion is not the dominant contribution to the phase distortion.  

The correction of the frequency dependent phase distortion has to be performed in the spectral domain, since the correction is different for each wavenumber and the interferogram samples carry information of all wavenumbers at the same time. In the case of the frequency independent phase distortion we found at the end of the previous section that the correction can be performed in the spectral domain via a convolution with a correction function. Here, we will apply a similar technique.

In order to correct for the frequency dependent phase distortion we first calculate the Fourier transform of exp[-iφ(x, ()] for each ( which we call G(((’).
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Then we correct the spectrum (U((’) which results from the Fourier transformation of the uncorrected interferogram by “convolving” it with  G(((’):
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In the strict mathematical sense, this is only a convolution if the function G(((’) is independent of ( which is the case of frequency independent phase distortion and equivalent to the correction technique previously discussed for that case. Here, the “convolution function” depends on (.  However, if the phase distortion is slowly varying with x and (,  G(((’) will also vary slowly with ( and all G(((’) functions are non zero only around (’=0. This means that locally (around each ( in the spectrum) the conditions are similar to a real convolution and good correction results can be achieved using this technique. In the following section we will illustrate this technique using the highly structured, near UV solar spectrum as an example.    

Simulated performance of frequency dependent phase distortion correction using a near UV solar spectrum

In order to assess the performance of the frequency dependent phase distortion correction discussed above, we take a high resolution near UV solar spectrum10 multiply it with a filter transmittance centered at about 309 nm and bin it into 513 frequency bins with a width of 60 mÅ. These parameters have been chosen, because they are similar to the parameters of the SHIMMER instruments.3,11 Using equation (2) as a model, synthetic interferograms were generated for this spectrum for the various phase distortion functions described below. Fig. 6 Panel A (6A) shows the spectrum without any phase distortion.

The first simulation uses a set of phase distortion functions that are a superposition of a frequency independent contribution and a function that is proportional to the frequency and to the fourth power of the pixel number to simulate image distortion. Fig. 6B shows three phase distortion functions for the frequencies marked (I, (II, and (III in Panel A. The leftmost, black marking in Panel A corresponds to the Littrow frequency. Fig. 6C shows the real part of the uncorrected spectrum that is retrieved by the Fourier transform of the phase distorted interferogram. It also shows the residuals with respect to the initial spectrum (Fig. 6A) in gray. Fig. 6D shows the phase corrected spectrum and the residuals multiplied by ten in gray. The correction has improved the residuals by more than an order of magnitude, but a systematic residual at the one percent level is still apparent. The correction is not complete because it relies on the assumption that the convolution functions (the Fourier transform of the phase distortion functions) are slowly varying with frequency and quickly falling off to zero away from the center. The phase distortion functions and corresponding convolution functions that we used for the first simulation violate mainly the second assumption. The convolution functions in this simulation do not show rapid convergence to zero away from the center because the phase distortion for the lowest frequency is significantly different from that at the highest frequency and the discrete Fourier transform of this “discontinuity” results in significant ringing. 

This behavior can be avoided by choosing phase distortion functions that have the same value for the highest and lowest frequency as seen in Fig. 7B. As a result the residuals (Fig. 7D) of the corrected spectrum improve significantly. Of course, this is not a real option for a given spectrometer, where the phase distortion functions cannot be changed easily. Another, more practical way to improve the performance of the correction is to reduce the resolution of the spectrum, for example by apodizing the interferogram. The lower resolution spectrum will effectively minimize the contibutions of the high frequency ringing of the convolution function in Equation (8). However, the price of lower spectral resolution has to be paid. Fig. 8A shows the solar spectrum convoluted with the line shape function that corresponds to an interferogram apodization using a Hanning function. For this case, the residuals of the corrected spectrum are well below the one percent level (see Fig. 8D).
Many spectra are calculated using apodized interferograms from the start to achieve a well localized instrumental line shape function rather than a sinc lineshape function which also includes significant ringing. In case the loss in resolution by apodizing the interferogram is not acceptable, the phase distortion term can be included in a frequency dependent instrumental line shape function for further data analysis. 

Conclusion

Interferograms measured by SHS instruments may show phase distortion depending on the instrument design and implementation. If significant phase distortion is present for a given instrument, it can generally be corrected without significant loss of signal to noise. We presented a method to determine the frequency dependent phase distortion and applied it to a measurement of a UV SHS instrument using a multi line source. For this case, we found the phase distortion to be very small and virtually frequency independent. We subsequently simulated three phase correction cases using the UV solar spectrum around 309 nm with different spectral resolution and different phase distortion functions. We verified that the correction method works well if the phase distortion varies slowly with frequency and if the Fourier transform of the phase distortion functions falls off quickly for higher frequencies. Since the second assumption is not necessarily true, e.g. if the phase distortion functions are not periodic, we showed that decreasing the resolution of the spectrum (apodizing the interferogram) improves the quality of the correction. 

Small phase distortions like the ones in our example should be the goal of every SHS spectrometer design but are not always easy to achieve4. In these cases, the proper correction gains in importance.

Funding for this research was provided by the Office of Naval Research. Additional support for the SHIMMER-MIDDECK instrument was provided by the National Science Foundation (ATM-9612228) and NASA (NRA 00-OSS-01 G/LCAS).
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Fig. 1. Schematic diagram of basic non-field-widened SHS configuration. The dashed lines illustrate an incoming wavefront and the corresponding exiting wavefronts which are crossed with an angle of 2γ. The ray bundle for one interferogram element is outlined showing that only a small section of the interferometer and optics are used for any individual interferogram element. 

Fig. 2. Black: Power spectrum of a MnNe hollow cathode lamp as measured by the SHIMMER-MIDDECK instrument versus spatial frequency of the recorded fringes.  Gray: Gaussian functions (FWHM = 9.7 spectral elements) used to isolate individual emission lines in order to determine the frequency dependent phase distortion.  

Fig. 3. Phase shift near the zero path difference (ZPD) point for the four MnNe emission lines. The naming of the lines (A, B, C, D) follows Fig. 2 and Table 2.  

Fig. 4. The bold, solid traces are the phase shift corrected total phase functions of the four MnNe emission lines listed in Table 2. The gray mesh is the phase plane which is fitted to the four phase functions. The two fit parameters are the Littrow wavenumber (0, where the phase function is zero, and the parameter C which is the linear slope increase of the phase functions with respect to the heterodyned wavenumber ((0 - (); see also Equation (4).

Fig. 5. Phase shift corrected phase distortion for the four emission lines listed in Table 2. All graphs are zero for Pixel 0 due to the phase shift correction. The phase distortion does not show a significant frequency dependence (The curves basically fall on top of each other). The smoothness of the curves is caused by the narrow Gaussian isolation functions shown in Fig. 2.  The phase distortion is small in the center of the detector array and the maximum phase distortion is less than a fringe (2(), even for line D which has the highest spatial frequency (~467 fringes per detector width) of the four lines. 

Fig. 6. First simulation case: High spectral resolution and nonperiodic phase distortion. A: High resolution solar spectrum multiplied with a typical interference filter transmittance. The leftmost, black mark indicates the Littrow frequency, gray marks indicate the frequencies for which the phase distortion functions are plotted in panel B. B: Phase distortion functions for the frequencies marked in Panel A. C: Real part of the uncorrected, phase distorted spectrum in black. Residuals between the uncorrected spectrum and the initial spectrum in gray. D: Phase distortion corrected spectrum in black. Residuals between the phase distortion corrected spectrum and the initial spectrum multiplied by 10 in gray.

Fig. 7. Second simulation case: High spectral resolution and periodic phase distortion. A: High resolution solar spectrum multiplied with a typical interference filter transmittance. The leftmost, black mark indicates the Littrow frequency, the gray marks indicate the frequencies for which the phase distortion functions are plotted in panel B. B: Phase distortion functions for the frequencies marked in Panel A. C: Real part of the uncorrected, phase distorted spectrum in black. Residuals between the uncorrected spectrum and the initial spectrum in gray. D: Phase distortion corrected spectrum in black. Residuals between the phase distortion corrected spectrum and the initial spectrum multiplied by 100 in gray. The residuals are more than an order of magnitude smaller than in the first simulation case (Fig. 6).

Fig. 8. Third simulation case: Lower spectral resolution and nonperiodic phase distortion. A: High resolution solar spectrum convolved with the kernel [¼, ½, ¼], which is equivalent to an interferogram apodization with a Hanning function, multiplied with a typical interference filter transmittance. The leftmost, black mark indicates the Littrow frequency, the gray marks indicate the frequencies for which the phase distortion functions are plotted in panel B. B: Phase distortion functions for the frequencies marked in Panel A. C: Real part of the uncorrected, phase distorted spectrum in black. Residuals between the uncorrected spectrum and the initial spectrum multiplied by 10 in gray. D: Phase distortion corrected spectrum in black. Residuals between the phase distortion corrected spectrum and the initial spectrum multiplied by 100 in gray. The residuals are more than an order of magnitude smaller than in the first simulation case (Fig. 6) and well below the one percent level.

Table 1. Key design parameters of the SHIMMER MIDDECK instrument
	Attribute
	Design Value

	Spectral Filter
	2.3 nm FWHM centered at 308.9 nm

	Resolving Power
	53,500

	Spectral Resolution
	58 ( 10-3 Å

	Maximum Etendue
(without optics transmission)
	96 ( 10-3 cm2sr


Table 2. Emission lines selected for this study.
	Identifier
	Emitter
	Line Position12 [nm]

	A
	Mn I
	307.9642

	B
	Ne II
	308.8170

	C
	Ne II
	309.2901

	D
	Ne II
	309.7133
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